Prediction of Bioluminescent Proteins Using Auto Covariance Transformation of Evolutional Profiles
نویسندگان
چکیده
Bioluminescent proteins are important for various cellular processes, such as gene expression analysis, drug discovery, bioluminescent imaging, toxicity determination, and DNA sequencing studies. Hence, the correct identification of bioluminescent proteins is of great importance both for helping genome annotation and providing a supplementary role to experimental research to obtain insight into bioluminescent proteins' functions. However, few computational methods are available for identifying bioluminescent proteins. Therefore, in this paper we develop a new method to predict bioluminescent proteins using a model based on position specific scoring matrix and auto covariance. Tested by 10-fold cross-validation and independent test, the accuracy of the proposed model reaches 85.17% for the training dataset and 90.71% for the testing dataset respectively. These results indicate that our predictor is a useful tool to predict bioluminescent proteins. This is the first study in which evolutionary information and local sequence environment information have been successfully integrated for predicting bioluminescent proteins. A web server (BLPre) that implements the proposed predictor is freely available.
منابع مشابه
Identifying the time of a step change in AR(1) auto-correlated simple linear profiles
Assuming a first-order auto-regressive model for the auto-correlation structure between observations, in this paper, a transformation method is first employed to eliminate the effect of auto-correlation. Then, a maximum likelihood estimator (MLE) of a step change in the parameters of the transformed model is derived and three separate EWMA control charts are used to monitor the parameters of th...
متن کاملAccurate prediction of bacterial type IV secreted effectors using amino acid composition and PSSM profiles
MOTIVATION Various human pathogens secret effector proteins into hosts cells via the type IV secretion system (T4SS). These proteins play important roles in the interaction between bacteria and hosts. Computational methods for T4SS effector prediction have been developed for screening experimental targets in several isolated bacterial species; however, widely applicable prediction approaches ar...
متن کاملProtein remote homology detection based on auto-cross covariance transformation
Protein remote homology detection is a critical step toward annotating its structure and function. Supervised learning algorithms such as support vector machine are currently the most accurate methods. The position-specific score matrices (PSSMs) contain wealthy information about the evolutionary relationship of proteins. However, the PSSMs often have different lengths, which are difficult to b...
متن کاملDetermining Difference in Evolutionary Variation of Bacterial RecA proteins vs 16SrRNA Genes by using 16s_Toxonomy Tree
Background and Aims: The rate of variation in various genes of a bacterial species is different during evolution. Therefore, in systematic bacterial studies many researchers compare the phylogenetic tree of a particular gene to the standard tree of an rRNA gene. Regarding the importance of 16SrRNA gene and the evolutional process of RecA protein family, we investigated the changes in the select...
متن کاملUsing support vector machine combined with auto covariance to predict protein–protein interactions from protein sequences
Compared to the available protein sequences of different organisms, the number of revealed protein-protein interactions (PPIs) is still very limited. So many computational methods have been developed to facilitate the identification of novel PPIs. However, the methods only using the information of protein sequences are more universal than those that depend on some additional information or pred...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2012